YTSFlix_Go/vendor/github.com/anacrolix/torrent/torrent.go
2018-11-04 15:58:15 +01:00

1792 lines
44 KiB
Go

package torrent
import (
"container/heap"
"crypto/sha1"
"errors"
"fmt"
"io"
"math"
"math/rand"
"net"
"net/url"
"os"
"strconv"
"sync"
"text/tabwriter"
"time"
"github.com/anacrolix/dht"
"github.com/anacrolix/log"
"github.com/anacrolix/missinggo"
"github.com/anacrolix/missinggo/bitmap"
"github.com/anacrolix/missinggo/perf"
"github.com/anacrolix/missinggo/prioritybitmap"
"github.com/anacrolix/missinggo/pubsub"
"github.com/anacrolix/missinggo/slices"
"github.com/davecgh/go-spew/spew"
"github.com/anacrolix/torrent/bencode"
"github.com/anacrolix/torrent/metainfo"
pp "github.com/anacrolix/torrent/peer_protocol"
"github.com/anacrolix/torrent/storage"
"github.com/anacrolix/torrent/tracker"
)
func (t *Torrent) chunkIndexSpec(chunkIndex pp.Integer, piece pieceIndex) chunkSpec {
return chunkIndexSpec(chunkIndex, t.pieceLength(piece), t.chunkSize)
}
type peersKey struct {
IPBytes string
Port int
}
// Maintains state of torrent within a Client.
type Torrent struct {
// Torrent-level aggregate statistics. First in struct to ensure 64-bit
// alignment. See #262.
stats ConnStats
cl *Client
logger *log.Logger
networkingEnabled bool
// Determines what chunks to request from peers. 1: Favour higher priority
// pieces with some fuzzing to reduce overlaps and wastage across
// connections. 2: The fastest connection downloads strictly in order of
// priority, while all others adher to their piece inclications. 3:
// Requests are strictly by piece priority, and not duplicated until
// duplicateRequestTimeout is reached.
requestStrategy int
// How long to avoid duplicating a pending request.
duplicateRequestTimeout time.Duration
closed missinggo.Event
infoHash metainfo.Hash
pieces []Piece
// Values are the piece indices that changed.
pieceStateChanges *pubsub.PubSub
// The size of chunks to request from peers over the wire. This is
// normally 16KiB by convention these days.
chunkSize pp.Integer
chunkPool *sync.Pool
// Total length of the torrent in bytes. Stored because it's not O(1) to
// get this from the info dict.
length *int64
// The storage to open when the info dict becomes available.
storageOpener *storage.Client
// Storage for torrent data.
storage *storage.Torrent
// Read-locked for using storage, and write-locked for Closing.
storageLock sync.RWMutex
// TODO: Only announce stuff is used?
metainfo metainfo.MetaInfo
// The info dict. nil if we don't have it (yet).
info *metainfo.Info
files *[]*File
// Active peer connections, running message stream loops. TODO: Make this
// open (not-closed) connections only.
conns map[*connection]struct{}
maxEstablishedConns int
// Set of addrs to which we're attempting to connect. Connections are
// half-open until all handshakes are completed.
halfOpen map[string]Peer
fastestConn *connection
// Reserve of peers to connect to. A peer can be both here and in the
// active connections if were told about the peer after connecting with
// them. That encourages us to reconnect to peers that are well known in
// the swarm.
peers prioritizedPeers
wantPeersEvent missinggo.Event
// An announcer for each tracker URL.
trackerAnnouncers map[string]*trackerScraper
// How many times we've initiated a DHT announce. TODO: Move into stats.
numDHTAnnounces int
// Name used if the info name isn't available. Should be cleared when the
// Info does become available.
displayName string
// The bencoded bytes of the info dict. This is actively manipulated if
// the info bytes aren't initially available, and we try to fetch them
// from peers.
metadataBytes []byte
// Each element corresponds to the 16KiB metadata pieces. If true, we have
// received that piece.
metadataCompletedChunks []bool
metadataChanged sync.Cond
// Set when .Info is obtained.
gotMetainfo missinggo.Event
readers map[*reader]struct{}
readerNowPieces bitmap.Bitmap
readerReadaheadPieces bitmap.Bitmap
// A cache of pieces we need to get. Calculated from various piece and
// file priorities and completion states elsewhere.
pendingPieces prioritybitmap.PriorityBitmap
// A cache of completed piece indices.
completedPieces bitmap.Bitmap
// Pieces that need to be hashed.
piecesQueuedForHash bitmap.Bitmap
// A pool of piece priorities []int for assignment to new connections.
// These "inclinations" are used to give connections preference for
// different pieces.
connPieceInclinationPool sync.Pool
// Count of each request across active connections.
pendingRequests map[request]int
// The last time we requested a chunk. Deleting the request from any
// connection will clear this value.
lastRequested map[request]*time.Timer
}
func (t *Torrent) tickleReaders() {
t.cl.event.Broadcast()
}
// Returns a channel that is closed when the Torrent is closed.
func (t *Torrent) Closed() <-chan struct{} {
return t.closed.LockedChan(t.cl.locker())
}
// KnownSwarm returns the known subset of the peers in the Torrent's swarm, including active,
// pending, and half-open peers.
func (t *Torrent) KnownSwarm() (ks []Peer) {
// Add pending peers to the list
t.peers.Each(func(peer Peer) {
ks = append(ks, peer)
})
// Add half-open peers to the list
for _, peer := range t.halfOpen {
ks = append(ks, peer)
}
// Add active peers to the list
for conn := range t.conns {
host, portString, err := net.SplitHostPort(conn.remoteAddr().String())
if err != nil {
panic(err)
}
ip := net.ParseIP(host)
port, err := strconv.Atoi(portString)
if err != nil {
panic(err)
}
ks = append(ks, Peer{
Id: conn.PeerID,
IP: ip,
Port: port,
Source: conn.Discovery,
// > If the connection is encrypted, that's certainly enough to set SupportsEncryption.
// > But if we're not connected to them with an encrypted connection, I couldn't say
// > what's appropriate. We can carry forward the SupportsEncryption value as we
// > received it from trackers/DHT/PEX, or just use the encryption state for the
// > connection. It's probably easiest to do the latter for now.
// https://github.com/anacrolix/torrent/pull/188
SupportsEncryption: conn.headerEncrypted,
})
}
return
}
func (t *Torrent) setChunkSize(size pp.Integer) {
t.chunkSize = size
t.chunkPool = &sync.Pool{
New: func() interface{} {
b := make([]byte, size)
return &b
},
}
}
func (t *Torrent) setDisplayName(dn string) {
if t.haveInfo() {
return
}
t.displayName = dn
}
func (t *Torrent) pieceComplete(piece pieceIndex) bool {
return t.completedPieces.Get(bitmap.BitIndex(piece))
}
func (t *Torrent) pieceCompleteUncached(piece pieceIndex) storage.Completion {
return t.pieces[piece].Storage().Completion()
}
// There's a connection to that address already.
func (t *Torrent) addrActive(addr string) bool {
if _, ok := t.halfOpen[addr]; ok {
return true
}
for c := range t.conns {
ra := c.remoteAddr()
if ra == nil {
continue
}
if ra.String() == addr {
return true
}
}
return false
}
func (t *Torrent) unclosedConnsAsSlice() (ret []*connection) {
ret = make([]*connection, 0, len(t.conns))
for c := range t.conns {
if !c.closed.IsSet() {
ret = append(ret, c)
}
}
return
}
func (t *Torrent) addPeer(p Peer) {
cl := t.cl
peersAddedBySource.Add(string(p.Source), 1)
if t.closed.IsSet() {
return
}
if cl.badPeerIPPort(p.IP, p.Port) {
torrent.Add("peers not added because of bad addr", 1)
return
}
if t.peers.Add(p) {
torrent.Add("peers replaced", 1)
}
t.openNewConns()
for t.peers.Len() > cl.config.TorrentPeersHighWater {
_, ok := t.peers.DeleteMin()
if ok {
torrent.Add("excess reserve peers discarded", 1)
}
}
}
func (t *Torrent) invalidateMetadata() {
for i := range t.metadataCompletedChunks {
t.metadataCompletedChunks[i] = false
}
t.info = nil
}
func (t *Torrent) saveMetadataPiece(index int, data []byte) {
if t.haveInfo() {
return
}
if index >= len(t.metadataCompletedChunks) {
log.Printf("%s: ignoring metadata piece %d", t, index)
return
}
copy(t.metadataBytes[(1<<14)*index:], data)
t.metadataCompletedChunks[index] = true
}
func (t *Torrent) metadataPieceCount() int {
return (len(t.metadataBytes) + (1 << 14) - 1) / (1 << 14)
}
func (t *Torrent) haveMetadataPiece(piece int) bool {
if t.haveInfo() {
return (1<<14)*piece < len(t.metadataBytes)
} else {
return piece < len(t.metadataCompletedChunks) && t.metadataCompletedChunks[piece]
}
}
func (t *Torrent) metadataSizeKnown() bool {
return t.metadataBytes != nil
}
func (t *Torrent) metadataSize() int {
return len(t.metadataBytes)
}
func infoPieceHashes(info *metainfo.Info) (ret []string) {
for i := 0; i < len(info.Pieces); i += sha1.Size {
ret = append(ret, string(info.Pieces[i:i+sha1.Size]))
}
return
}
func (t *Torrent) makePieces() {
hashes := infoPieceHashes(t.info)
t.pieces = make([]Piece, len(hashes), len(hashes))
for i, hash := range hashes {
piece := &t.pieces[i]
piece.t = t
piece.index = pieceIndex(i)
piece.noPendingWrites.L = &piece.pendingWritesMutex
missinggo.CopyExact(piece.hash[:], hash)
files := *t.files
beginFile := pieceFirstFileIndex(piece.torrentBeginOffset(), files)
endFile := pieceEndFileIndex(piece.torrentEndOffset(), files)
piece.files = files[beginFile:endFile]
}
}
// Returns the index of the first file containing the piece. files must be
// ordered by offset.
func pieceFirstFileIndex(pieceOffset int64, files []*File) int {
for i, f := range files {
if f.offset+f.length > pieceOffset {
return i
}
}
return 0
}
// Returns the index after the last file containing the piece. files must be
// ordered by offset.
func pieceEndFileIndex(pieceEndOffset int64, files []*File) int {
for i, f := range files {
if f.offset+f.length >= pieceEndOffset {
return i + 1
}
}
return 0
}
func (t *Torrent) cacheLength() {
var l int64
for _, f := range t.info.UpvertedFiles() {
l += f.Length
}
t.length = &l
}
func (t *Torrent) setInfo(info *metainfo.Info) error {
if err := validateInfo(info); err != nil {
return fmt.Errorf("bad info: %s", err)
}
if t.storageOpener != nil {
var err error
t.storage, err = t.storageOpener.OpenTorrent(info, t.infoHash)
if err != nil {
return fmt.Errorf("error opening torrent storage: %s", err)
}
}
t.info = info
t.displayName = "" // Save a few bytes lol.
t.initFiles()
t.cacheLength()
t.makePieces()
return nil
}
func (t *Torrent) onSetInfo() {
for conn := range t.conns {
if err := conn.setNumPieces(t.numPieces()); err != nil {
log.Printf("closing connection: %s", err)
conn.Close()
}
}
for i := range t.pieces {
t.updatePieceCompletion(pieceIndex(i))
p := &t.pieces[i]
if !p.storageCompletionOk {
// log.Printf("piece %s completion unknown, queueing check", p)
t.queuePieceCheck(pieceIndex(i))
}
}
t.cl.event.Broadcast()
t.gotMetainfo.Set()
t.updateWantPeersEvent()
t.pendingRequests = make(map[request]int)
t.lastRequested = make(map[request]*time.Timer)
}
// Called when metadata for a torrent becomes available.
func (t *Torrent) setInfoBytes(b []byte) error {
if metainfo.HashBytes(b) != t.infoHash {
return errors.New("info bytes have wrong hash")
}
var info metainfo.Info
if err := bencode.Unmarshal(b, &info); err != nil {
return fmt.Errorf("error unmarshalling info bytes: %s", err)
}
if err := t.setInfo(&info); err != nil {
return err
}
t.metadataBytes = b
t.metadataCompletedChunks = nil
t.onSetInfo()
return nil
}
func (t *Torrent) haveAllMetadataPieces() bool {
if t.haveInfo() {
return true
}
if t.metadataCompletedChunks == nil {
return false
}
for _, have := range t.metadataCompletedChunks {
if !have {
return false
}
}
return true
}
// TODO: Propagate errors to disconnect peer.
func (t *Torrent) setMetadataSize(bytes int) (err error) {
if t.haveInfo() {
// We already know the correct metadata size.
return
}
if bytes <= 0 || bytes > 10000000 { // 10MB, pulled from my ass.
return errors.New("bad size")
}
if t.metadataBytes != nil && len(t.metadataBytes) == int(bytes) {
return
}
t.metadataBytes = make([]byte, bytes)
t.metadataCompletedChunks = make([]bool, (bytes+(1<<14)-1)/(1<<14))
t.metadataChanged.Broadcast()
for c := range t.conns {
c.requestPendingMetadata()
}
return
}
// The current working name for the torrent. Either the name in the info dict,
// or a display name given such as by the dn value in a magnet link, or "".
func (t *Torrent) name() string {
if t.haveInfo() {
return t.info.Name
}
return t.displayName
}
func (t *Torrent) pieceState(index pieceIndex) (ret PieceState) {
p := &t.pieces[index]
ret.Priority = t.piecePriority(index)
ret.Completion = p.completion()
if p.queuedForHash() || p.hashing {
ret.Checking = true
}
if !ret.Complete && t.piecePartiallyDownloaded(index) {
ret.Partial = true
}
return
}
func (t *Torrent) metadataPieceSize(piece int) int {
return metadataPieceSize(len(t.metadataBytes), piece)
}
func (t *Torrent) newMetadataExtensionMessage(c *connection, msgType int, piece int, data []byte) pp.Message {
d := map[string]int{
"msg_type": msgType,
"piece": piece,
}
if data != nil {
d["total_size"] = len(t.metadataBytes)
}
p := bencode.MustMarshal(d)
return pp.Message{
Type: pp.Extended,
ExtendedID: c.PeerExtensionIDs[pp.ExtensionNameMetadata],
ExtendedPayload: append(p, data...),
}
}
func (t *Torrent) pieceStateRuns() (ret []PieceStateRun) {
rle := missinggo.NewRunLengthEncoder(func(el interface{}, count uint64) {
ret = append(ret, PieceStateRun{
PieceState: el.(PieceState),
Length: int(count),
})
})
for index := range t.pieces {
rle.Append(t.pieceState(pieceIndex(index)), 1)
}
rle.Flush()
return
}
// Produces a small string representing a PieceStateRun.
func pieceStateRunStatusChars(psr PieceStateRun) (ret string) {
ret = fmt.Sprintf("%d", psr.Length)
ret += func() string {
switch psr.Priority {
case PiecePriorityNext:
return "N"
case PiecePriorityNormal:
return "."
case PiecePriorityReadahead:
return "R"
case PiecePriorityNow:
return "!"
case PiecePriorityHigh:
return "H"
default:
return ""
}
}()
if psr.Checking {
ret += "H"
}
if psr.Partial {
ret += "P"
}
if psr.Complete {
ret += "C"
}
if !psr.Ok {
ret += "?"
}
return
}
func (t *Torrent) writeStatus(w io.Writer) {
fmt.Fprintf(w, "Infohash: %s\n", t.infoHash.HexString())
fmt.Fprintf(w, "Metadata length: %d\n", t.metadataSize())
if !t.haveInfo() {
fmt.Fprintf(w, "Metadata have: ")
for _, h := range t.metadataCompletedChunks {
fmt.Fprintf(w, "%c", func() rune {
if h {
return 'H'
} else {
return '.'
}
}())
}
fmt.Fprintln(w)
}
fmt.Fprintf(w, "Piece length: %s\n", func() string {
if t.haveInfo() {
return fmt.Sprint(t.usualPieceSize())
} else {
return "?"
}
}())
if t.info != nil {
fmt.Fprintf(w, "Num Pieces: %d (%d completed)\n", t.numPieces(), t.numPiecesCompleted())
fmt.Fprint(w, "Piece States:")
for _, psr := range t.pieceStateRuns() {
w.Write([]byte(" "))
w.Write([]byte(pieceStateRunStatusChars(psr)))
}
fmt.Fprintln(w)
}
fmt.Fprintf(w, "Reader Pieces:")
t.forReaderOffsetPieces(func(begin, end pieceIndex) (again bool) {
fmt.Fprintf(w, " %d:%d", begin, end)
return true
})
fmt.Fprintln(w)
fmt.Fprintf(w, "Enabled trackers:\n")
func() {
tw := tabwriter.NewWriter(w, 0, 0, 2, ' ', 0)
fmt.Fprintf(tw, " URL\tNext announce\tLast announce\n")
for _, ta := range slices.Sort(slices.FromMapElems(t.trackerAnnouncers), func(l, r *trackerScraper) bool {
return l.u.String() < r.u.String()
}).([]*trackerScraper) {
fmt.Fprintf(tw, " %s\n", ta.statusLine())
}
tw.Flush()
}()
fmt.Fprintf(w, "DHT Announces: %d\n", t.numDHTAnnounces)
spew.NewDefaultConfig()
spew.Fdump(w, t.statsLocked())
conns := t.connsAsSlice()
slices.Sort(conns, worseConn)
for i, c := range conns {
fmt.Fprintf(w, "%2d. ", i+1)
c.WriteStatus(w, t)
}
}
func (t *Torrent) haveInfo() bool {
return t.info != nil
}
// Returns a run-time generated MetaInfo that includes the info bytes and
// announce-list as currently known to the client.
func (t *Torrent) newMetaInfo() metainfo.MetaInfo {
return metainfo.MetaInfo{
CreationDate: time.Now().Unix(),
Comment: "dynamic metainfo from client",
CreatedBy: "go.torrent",
AnnounceList: t.metainfo.UpvertedAnnounceList(),
InfoBytes: func() []byte {
if t.haveInfo() {
return t.metadataBytes
} else {
return nil
}
}(),
}
}
func (t *Torrent) BytesMissing() int64 {
t.cl.rLock()
defer t.cl.rUnlock()
return t.bytesMissingLocked()
}
func (t *Torrent) bytesMissingLocked() int64 {
return t.bytesLeft()
}
func (t *Torrent) bytesLeft() (left int64) {
bitmap.Flip(t.completedPieces, 0, bitmap.BitIndex(t.numPieces())).IterTyped(func(piece int) bool {
p := &t.pieces[piece]
left += int64(p.length() - p.numDirtyBytes())
return true
})
return
}
// Bytes left to give in tracker announces.
func (t *Torrent) bytesLeftAnnounce() uint64 {
if t.haveInfo() {
return uint64(t.bytesLeft())
} else {
return math.MaxUint64
}
}
func (t *Torrent) piecePartiallyDownloaded(piece pieceIndex) bool {
if t.pieceComplete(piece) {
return false
}
if t.pieceAllDirty(piece) {
return false
}
return t.pieces[piece].hasDirtyChunks()
}
func (t *Torrent) usualPieceSize() int {
return int(t.info.PieceLength)
}
func (t *Torrent) numPieces() pieceIndex {
return pieceIndex(t.info.NumPieces())
}
func (t *Torrent) numPiecesCompleted() (num int) {
return t.completedPieces.Len()
}
func (t *Torrent) close() (err error) {
t.closed.Set()
t.tickleReaders()
if t.storage != nil {
t.storageLock.Lock()
t.storage.Close()
t.storageLock.Unlock()
}
for conn := range t.conns {
conn.Close()
}
t.cl.event.Broadcast()
t.pieceStateChanges.Close()
t.updateWantPeersEvent()
return
}
func (t *Torrent) requestOffset(r request) int64 {
return torrentRequestOffset(*t.length, int64(t.usualPieceSize()), r)
}
// Return the request that would include the given offset into the torrent
// data. Returns !ok if there is no such request.
func (t *Torrent) offsetRequest(off int64) (req request, ok bool) {
return torrentOffsetRequest(*t.length, t.info.PieceLength, int64(t.chunkSize), off)
}
func (t *Torrent) writeChunk(piece int, begin int64, data []byte) (err error) {
defer perf.ScopeTimerErr(&err)()
n, err := t.pieces[piece].Storage().WriteAt(data, begin)
if err == nil && n != len(data) {
err = io.ErrShortWrite
}
return
}
func (t *Torrent) bitfield() (bf []bool) {
bf = make([]bool, t.numPieces())
t.completedPieces.IterTyped(func(piece int) (again bool) {
bf[piece] = true
return true
})
return
}
func (t *Torrent) pieceNumChunks(piece pieceIndex) pp.Integer {
return (t.pieceLength(piece) + t.chunkSize - 1) / t.chunkSize
}
func (t *Torrent) pendAllChunkSpecs(pieceIndex pieceIndex) {
t.pieces[pieceIndex].dirtyChunks.Clear()
}
func (t *Torrent) pieceLength(piece pieceIndex) pp.Integer {
if t.info.PieceLength == 0 {
// There will be no variance amongst pieces. Only pain.
return 0
}
if piece == t.numPieces()-1 {
ret := pp.Integer(*t.length % t.info.PieceLength)
if ret != 0 {
return ret
}
}
return pp.Integer(t.info.PieceLength)
}
func (t *Torrent) hashPiece(piece pieceIndex) (ret metainfo.Hash) {
hash := pieceHash.New()
p := &t.pieces[piece]
p.waitNoPendingWrites()
ip := t.info.Piece(int(piece))
pl := ip.Length()
n, err := io.Copy(hash, io.NewSectionReader(t.pieces[piece].Storage(), 0, pl))
if n == pl {
missinggo.CopyExact(&ret, hash.Sum(nil))
return
}
if err != io.ErrUnexpectedEOF && !os.IsNotExist(err) {
log.Printf("unexpected error hashing piece with %T: %s", t.storage.TorrentImpl, err)
}
return
}
func (t *Torrent) haveAnyPieces() bool {
return t.completedPieces.Len() != 0
}
func (t *Torrent) haveAllPieces() bool {
if !t.haveInfo() {
return false
}
return t.completedPieces.Len() == bitmap.BitIndex(t.numPieces())
}
func (t *Torrent) havePiece(index pieceIndex) bool {
return t.haveInfo() && t.pieceComplete(index)
}
func (t *Torrent) haveChunk(r request) (ret bool) {
// defer func() {
// log.Println("have chunk", r, ret)
// }()
if !t.haveInfo() {
return false
}
if t.pieceComplete(pieceIndex(r.Index)) {
return true
}
p := &t.pieces[r.Index]
return !p.pendingChunk(r.chunkSpec, t.chunkSize)
}
func chunkIndex(cs chunkSpec, chunkSize pp.Integer) int {
return int(cs.Begin / chunkSize)
}
func (t *Torrent) wantPiece(r request) bool {
if !t.wantPieceIndex(pieceIndex(r.Index)) {
return false
}
if t.pieces[r.Index].pendingChunk(r.chunkSpec, t.chunkSize) {
return true
}
// TODO: What about pieces that were wanted, but aren't now, and aren't
// completed either? That used to be done here.
return false
}
func (t *Torrent) wantPieceIndex(index pieceIndex) bool {
if !t.haveInfo() {
return false
}
if index < 0 || index >= t.numPieces() {
return false
}
p := &t.pieces[index]
if p.queuedForHash() {
return false
}
if p.hashing {
return false
}
if t.pieceComplete(index) {
return false
}
if t.pendingPieces.Contains(bitmap.BitIndex(index)) {
return true
}
// log.Printf("piece %d not pending", index)
return !t.forReaderOffsetPieces(func(begin, end pieceIndex) bool {
return index < begin || index >= end
})
}
// The worst connection is one that hasn't been sent, or sent anything useful
// for the longest. A bad connection is one that usually sends us unwanted
// pieces, or has been in worser half of the established connections for more
// than a minute.
func (t *Torrent) worstBadConn() *connection {
wcs := worseConnSlice{t.unclosedConnsAsSlice()}
heap.Init(&wcs)
for wcs.Len() != 0 {
c := heap.Pop(&wcs).(*connection)
if c.stats.ChunksReadWasted.Int64() >= 6 && c.stats.ChunksReadWasted.Int64() > c.stats.ChunksReadUseful.Int64() {
return c
}
// If the connection is in the worst half of the established
// connection quota and is older than a minute.
if wcs.Len() >= (t.maxEstablishedConns+1)/2 {
// Give connections 1 minute to prove themselves.
if time.Since(c.completedHandshake) > time.Minute {
return c
}
}
}
return nil
}
type PieceStateChange struct {
Index int
PieceState
}
func (t *Torrent) publishPieceChange(piece pieceIndex) {
cur := t.pieceState(piece)
p := &t.pieces[piece]
if cur != p.publicPieceState {
p.publicPieceState = cur
t.pieceStateChanges.Publish(PieceStateChange{
int(piece),
cur,
})
}
}
func (t *Torrent) pieceNumPendingChunks(piece pieceIndex) pp.Integer {
if t.pieceComplete(piece) {
return 0
}
return t.pieceNumChunks(piece) - t.pieces[piece].numDirtyChunks()
}
func (t *Torrent) pieceAllDirty(piece pieceIndex) bool {
return t.pieces[piece].dirtyChunks.Len() == int(t.pieceNumChunks(piece))
}
func (t *Torrent) readersChanged() {
t.updateReaderPieces()
t.updateAllPiecePriorities()
}
func (t *Torrent) updateReaderPieces() {
t.readerNowPieces, t.readerReadaheadPieces = t.readerPiecePriorities()
}
func (t *Torrent) readerPosChanged(from, to pieceRange) {
if from == to {
return
}
t.updateReaderPieces()
// Order the ranges, high and low.
l, h := from, to
if l.begin > h.begin {
l, h = h, l
}
if l.end < h.begin {
// Two distinct ranges.
t.updatePiecePriorities(l.begin, l.end)
t.updatePiecePriorities(h.begin, h.end)
} else {
// Ranges overlap.
end := l.end
if h.end > end {
end = h.end
}
t.updatePiecePriorities(l.begin, end)
}
}
func (t *Torrent) maybeNewConns() {
// Tickle the accept routine.
t.cl.event.Broadcast()
t.openNewConns()
}
func (t *Torrent) piecePriorityChanged(piece pieceIndex) {
// log.Printf("piece %d priority changed", piece)
for c := range t.conns {
if c.updatePiecePriority(piece) {
// log.Print("conn piece priority changed")
c.updateRequests()
}
}
t.maybeNewConns()
t.publishPieceChange(piece)
}
func (t *Torrent) updatePiecePriority(piece pieceIndex) {
p := &t.pieces[piece]
newPrio := p.uncachedPriority()
// log.Printf("torrent %p: piece %d: uncached priority: %v", t, piece, newPrio)
if newPrio == PiecePriorityNone {
if !t.pendingPieces.Remove(bitmap.BitIndex(piece)) {
return
}
} else {
if !t.pendingPieces.Set(bitmap.BitIndex(piece), newPrio.BitmapPriority()) {
return
}
}
t.piecePriorityChanged(piece)
}
func (t *Torrent) updateAllPiecePriorities() {
t.updatePiecePriorities(0, t.numPieces())
}
// Update all piece priorities in one hit. This function should have the same
// output as updatePiecePriority, but across all pieces.
func (t *Torrent) updatePiecePriorities(begin, end pieceIndex) {
for i := begin; i < end; i++ {
t.updatePiecePriority(i)
}
}
// Returns the range of pieces [begin, end) that contains the extent of bytes.
func (t *Torrent) byteRegionPieces(off, size int64) (begin, end pieceIndex) {
if off >= *t.length {
return
}
if off < 0 {
size += off
off = 0
}
if size <= 0 {
return
}
begin = pieceIndex(off / t.info.PieceLength)
end = pieceIndex((off + size + t.info.PieceLength - 1) / t.info.PieceLength)
if end > pieceIndex(t.info.NumPieces()) {
end = pieceIndex(t.info.NumPieces())
}
return
}
// Returns true if all iterations complete without breaking. Returns the read
// regions for all readers. The reader regions should not be merged as some
// callers depend on this method to enumerate readers.
func (t *Torrent) forReaderOffsetPieces(f func(begin, end pieceIndex) (more bool)) (all bool) {
for r := range t.readers {
p := r.pieces
if p.begin >= p.end {
continue
}
if !f(p.begin, p.end) {
return false
}
}
return true
}
func (t *Torrent) piecePriority(piece pieceIndex) piecePriority {
prio, ok := t.pendingPieces.GetPriority(bitmap.BitIndex(piece))
if !ok {
return PiecePriorityNone
}
if prio > 0 {
panic(prio)
}
ret := piecePriority(-prio)
if ret == PiecePriorityNone {
panic(piece)
}
return ret
}
func (t *Torrent) pendRequest(req request) {
ci := chunkIndex(req.chunkSpec, t.chunkSize)
t.pieces[req.Index].pendChunkIndex(ci)
}
func (t *Torrent) pieceCompletionChanged(piece pieceIndex) {
log.Call().Add("piece", piece).AddValue(debugLogValue).Log(t.logger)
t.cl.event.Broadcast()
if t.pieceComplete(piece) {
t.onPieceCompleted(piece)
} else {
t.onIncompletePiece(piece)
}
t.updatePiecePriority(piece)
}
func (t *Torrent) numReceivedConns() (ret int) {
for c := range t.conns {
if c.Discovery == peerSourceIncoming {
ret++
}
}
return
}
func (t *Torrent) maxHalfOpen() int {
// Note that if we somehow exceed the maximum established conns, we want
// the negative value to have an effect.
establishedHeadroom := int64(t.maxEstablishedConns - len(t.conns))
extraIncoming := int64(t.numReceivedConns() - t.maxEstablishedConns/2)
// We want to allow some experimentation with new peers, and to try to
// upset an oversupply of received connections.
return int(min(max(5, extraIncoming)+establishedHeadroom, int64(t.cl.config.HalfOpenConnsPerTorrent)))
}
func (t *Torrent) openNewConns() {
defer t.updateWantPeersEvent()
for t.peers.Len() != 0 {
if !t.wantConns() {
return
}
if len(t.halfOpen) >= t.maxHalfOpen() {
return
}
p := t.peers.PopMax()
t.initiateConn(p)
}
}
func (t *Torrent) getConnPieceInclination() []int {
_ret := t.connPieceInclinationPool.Get()
if _ret == nil {
pieceInclinationsNew.Add(1)
return rand.Perm(int(t.numPieces()))
}
pieceInclinationsReused.Add(1)
return *_ret.(*[]int)
}
func (t *Torrent) putPieceInclination(pi []int) {
t.connPieceInclinationPool.Put(&pi)
pieceInclinationsPut.Add(1)
}
func (t *Torrent) updatePieceCompletion(piece pieceIndex) {
pcu := t.pieceCompleteUncached(piece)
p := &t.pieces[piece]
changed := t.completedPieces.Get(bitmap.BitIndex(piece)) != pcu.Complete || p.storageCompletionOk != pcu.Ok
log.Fmsg("piece %d completion: %v", piece, pcu.Ok).AddValue(debugLogValue).Log(t.logger)
p.storageCompletionOk = pcu.Ok
t.completedPieces.Set(bitmap.BitIndex(piece), pcu.Complete)
t.tickleReaders()
// log.Printf("piece %d uncached completion: %v", piece, pcu.Complete)
// log.Printf("piece %d changed: %v", piece, changed)
if changed {
t.pieceCompletionChanged(piece)
}
}
// Non-blocking read. Client lock is not required.
func (t *Torrent) readAt(b []byte, off int64) (n int, err error) {
p := &t.pieces[off/t.info.PieceLength]
p.waitNoPendingWrites()
return p.Storage().ReadAt(b, off-p.Info().Offset())
}
func (t *Torrent) updateAllPieceCompletions() {
for i := pieceIndex(0); i < t.numPieces(); i++ {
t.updatePieceCompletion(i)
}
}
// Returns an error if the metadata was completed, but couldn't be set for
// some reason. Blame it on the last peer to contribute.
func (t *Torrent) maybeCompleteMetadata() error {
if t.haveInfo() {
// Nothing to do.
return nil
}
if !t.haveAllMetadataPieces() {
// Don't have enough metadata pieces.
return nil
}
err := t.setInfoBytes(t.metadataBytes)
if err != nil {
t.invalidateMetadata()
return fmt.Errorf("error setting info bytes: %s", err)
}
if t.cl.config.Debug {
log.Printf("%s: got metadata from peers", t)
}
return nil
}
func (t *Torrent) readerPieces() (ret bitmap.Bitmap) {
t.forReaderOffsetPieces(func(begin, end pieceIndex) bool {
ret.AddRange(bitmap.BitIndex(begin), bitmap.BitIndex(end))
return true
})
return
}
func (t *Torrent) readerPiecePriorities() (now, readahead bitmap.Bitmap) {
t.forReaderOffsetPieces(func(begin, end pieceIndex) bool {
if end > begin {
now.Add(bitmap.BitIndex(begin))
readahead.AddRange(bitmap.BitIndex(begin)+1, bitmap.BitIndex(end))
}
return true
})
return
}
func (t *Torrent) needData() bool {
if t.closed.IsSet() {
return false
}
if !t.haveInfo() {
return true
}
return t.pendingPieces.Len() != 0
}
func appendMissingStrings(old, new []string) (ret []string) {
ret = old
new:
for _, n := range new {
for _, o := range old {
if o == n {
continue new
}
}
ret = append(ret, n)
}
return
}
func appendMissingTrackerTiers(existing [][]string, minNumTiers int) (ret [][]string) {
ret = existing
for minNumTiers > len(ret) {
ret = append(ret, nil)
}
return
}
func (t *Torrent) addTrackers(announceList [][]string) {
fullAnnounceList := &t.metainfo.AnnounceList
t.metainfo.AnnounceList = appendMissingTrackerTiers(*fullAnnounceList, len(announceList))
for tierIndex, trackerURLs := range announceList {
(*fullAnnounceList)[tierIndex] = appendMissingStrings((*fullAnnounceList)[tierIndex], trackerURLs)
}
t.startMissingTrackerScrapers()
t.updateWantPeersEvent()
}
// Don't call this before the info is available.
func (t *Torrent) bytesCompleted() int64 {
if !t.haveInfo() {
return 0
}
return t.info.TotalLength() - t.bytesLeft()
}
func (t *Torrent) SetInfoBytes(b []byte) (err error) {
t.cl.lock()
defer t.cl.unlock()
return t.setInfoBytes(b)
}
// Returns true if connection is removed from torrent.Conns.
func (t *Torrent) deleteConnection(c *connection) (ret bool) {
if !c.closed.IsSet() {
panic("connection is not closed")
// There are behaviours prevented by the closed state that will fail
// if the connection has been deleted.
}
_, ret = t.conns[c]
delete(t.conns, c)
torrent.Add("deleted connections", 1)
c.deleteAllRequests()
if len(t.conns) == 0 {
t.assertNoPendingRequests()
}
return
}
func (t *Torrent) assertNoPendingRequests() {
if len(t.pendingRequests) != 0 {
panic(t.pendingRequests)
}
if len(t.lastRequested) != 0 {
panic(t.lastRequested)
}
}
func (t *Torrent) dropConnection(c *connection) {
t.cl.event.Broadcast()
c.Close()
if t.deleteConnection(c) {
t.openNewConns()
}
}
func (t *Torrent) wantPeers() bool {
if t.closed.IsSet() {
return false
}
if t.peers.Len() > t.cl.config.TorrentPeersLowWater {
return false
}
return t.needData() || t.seeding()
}
func (t *Torrent) updateWantPeersEvent() {
if t.wantPeers() {
t.wantPeersEvent.Set()
} else {
t.wantPeersEvent.Clear()
}
}
// Returns whether the client should make effort to seed the torrent.
func (t *Torrent) seeding() bool {
cl := t.cl
if t.closed.IsSet() {
return false
}
if cl.config.NoUpload {
return false
}
if !cl.config.Seed {
return false
}
if cl.config.DisableAggressiveUpload && t.needData() {
return false
}
return true
}
func (t *Torrent) startScrapingTracker(_url string) {
if _url == "" {
return
}
u, err := url.Parse(_url)
if err != nil {
log.Str("error parsing tracker url").AddValues("url", _url).Log(t.logger)
// TODO: Handle urls with leading '*', some kind of silly uTorrent
// convention?
return
}
if u.Scheme == "udp" {
u.Scheme = "udp4"
t.startScrapingTracker(u.String())
u.Scheme = "udp6"
t.startScrapingTracker(u.String())
return
}
if u.Scheme == "udp4" && (t.cl.config.DisableIPv4Peers || t.cl.config.DisableIPv4) {
return
}
if u.Scheme == "udp6" && t.cl.config.DisableIPv6 {
return
}
if _, ok := t.trackerAnnouncers[_url]; ok {
return
}
newAnnouncer := &trackerScraper{
u: *u,
t: t,
}
if t.trackerAnnouncers == nil {
t.trackerAnnouncers = make(map[string]*trackerScraper)
}
t.trackerAnnouncers[_url] = newAnnouncer
go newAnnouncer.Run()
}
// Adds and starts tracker scrapers for tracker URLs that aren't already
// running.
func (t *Torrent) startMissingTrackerScrapers() {
if t.cl.config.DisableTrackers {
return
}
t.startScrapingTracker(t.metainfo.Announce)
for _, tier := range t.metainfo.AnnounceList {
for _, url := range tier {
t.startScrapingTracker(url)
}
}
}
// Returns an AnnounceRequest with fields filled out to defaults and current
// values.
func (t *Torrent) announceRequest() tracker.AnnounceRequest {
// Note that IPAddress is not set. It's set for UDP inside the tracker
// code, since it's dependent on the network in use.
return tracker.AnnounceRequest{
Event: tracker.None,
NumWant: -1,
Port: uint16(t.cl.incomingPeerPort()),
PeerId: t.cl.peerID,
InfoHash: t.infoHash,
Key: t.cl.announceKey(),
// The following are vaguely described in BEP 3.
Left: t.bytesLeftAnnounce(),
Uploaded: t.stats.BytesWrittenData.Int64(),
// There's no mention of wasted or unwanted download in the BEP.
Downloaded: t.stats.BytesReadUsefulData.Int64(),
}
}
// Adds peers revealed in an announce until the announce ends, or we have
// enough peers.
func (t *Torrent) consumeDHTAnnounce(pvs <-chan dht.PeersValues) {
cl := t.cl
// Count all the unique addresses we got during this announce.
allAddrs := make(map[string]struct{})
for {
select {
case v, ok := <-pvs:
if !ok {
return
}
addPeers := make([]Peer, 0, len(v.Peers))
for _, cp := range v.Peers {
if cp.Port == 0 {
// Can't do anything with this.
continue
}
addPeers = append(addPeers, Peer{
IP: cp.IP[:],
Port: cp.Port,
Source: peerSourceDHTGetPeers,
})
key := (&net.UDPAddr{
IP: cp.IP[:],
Port: cp.Port,
}).String()
allAddrs[key] = struct{}{}
}
cl.lock()
t.addPeers(addPeers)
numPeers := t.peers.Len()
cl.unlock()
if numPeers >= cl.config.TorrentPeersHighWater {
return
}
case <-t.closed.LockedChan(cl.locker()):
return
}
}
}
func (t *Torrent) announceDHT(impliedPort bool, s *dht.Server) (err error) {
cl := t.cl
ps, err := s.Announce(t.infoHash, cl.incomingPeerPort(), impliedPort)
if err != nil {
return
}
t.consumeDHTAnnounce(ps.Peers)
ps.Close()
return
}
func (t *Torrent) dhtAnnouncer(s *dht.Server) {
cl := t.cl
for {
select {
case <-t.wantPeersEvent.LockedChan(cl.locker()):
case <-t.closed.LockedChan(cl.locker()):
return
}
err := t.announceDHT(true, s)
func() {
cl.lock()
defer cl.unlock()
if err == nil {
t.numDHTAnnounces++
} else {
log.Printf("error announcing %q to DHT: %s", t, err)
}
}()
select {
case <-t.closed.LockedChan(cl.locker()):
return
case <-time.After(5 * time.Minute):
}
}
}
func (t *Torrent) addPeers(peers []Peer) {
for _, p := range peers {
t.addPeer(p)
}
}
func (t *Torrent) Stats() TorrentStats {
t.cl.rLock()
defer t.cl.rUnlock()
return t.statsLocked()
}
func (t *Torrent) statsLocked() (ret TorrentStats) {
ret.ActivePeers = len(t.conns)
ret.HalfOpenPeers = len(t.halfOpen)
ret.PendingPeers = t.peers.Len()
ret.TotalPeers = t.numTotalPeers()
ret.ConnectedSeeders = 0
for c := range t.conns {
if all, ok := c.peerHasAllPieces(); all && ok {
ret.ConnectedSeeders++
}
}
ret.ConnStats = t.stats.Copy()
return
}
// The total number of peers in the torrent.
func (t *Torrent) numTotalPeers() int {
peers := make(map[string]struct{})
for conn := range t.conns {
ra := conn.conn.RemoteAddr()
if ra == nil {
// It's been closed and doesn't support RemoteAddr.
continue
}
peers[ra.String()] = struct{}{}
}
for addr := range t.halfOpen {
peers[addr] = struct{}{}
}
t.peers.Each(func(peer Peer) {
peers[fmt.Sprintf("%s:%d", peer.IP, peer.Port)] = struct{}{}
})
return len(peers)
}
// Reconcile bytes transferred before connection was associated with a
// torrent.
func (t *Torrent) reconcileHandshakeStats(c *connection) {
if c.stats != (ConnStats{
// Handshakes should only increment these fields:
BytesWritten: c.stats.BytesWritten,
BytesRead: c.stats.BytesRead,
}) {
panic("bad stats")
}
c.postHandshakeStats(func(cs *ConnStats) {
cs.BytesRead.Add(c.stats.BytesRead.Int64())
cs.BytesWritten.Add(c.stats.BytesWritten.Int64())
})
c.reconciledHandshakeStats = true
}
// Returns true if the connection is added.
func (t *Torrent) addConnection(c *connection) (err error) {
defer func() {
if err == nil {
torrent.Add("added connections", 1)
}
}()
if t.closed.IsSet() {
return errors.New("torrent closed")
}
for c0 := range t.conns {
if c.PeerID != c0.PeerID {
continue
}
if !t.cl.config.dropDuplicatePeerIds {
continue
}
if left, ok := c.hasPreferredNetworkOver(c0); ok && left {
c0.Close()
t.deleteConnection(c0)
} else {
return errors.New("existing connection preferred")
}
}
if len(t.conns) >= t.maxEstablishedConns {
c := t.worstBadConn()
if c == nil {
return errors.New("don't want conns")
}
if t.cl.config.Debug && missinggo.CryHeard() {
log.Printf("%s: dropping connection to make room for new one:\n %v", t, c)
}
c.Close()
t.deleteConnection(c)
}
if len(t.conns) >= t.maxEstablishedConns {
panic(len(t.conns))
}
t.conns[c] = struct{}{}
return nil
}
func (t *Torrent) wantConns() bool {
if !t.networkingEnabled {
return false
}
if t.closed.IsSet() {
return false
}
if !t.seeding() && !t.needData() {
return false
}
if len(t.conns) < t.maxEstablishedConns {
return true
}
return t.worstBadConn() != nil
}
func (t *Torrent) SetMaxEstablishedConns(max int) (oldMax int) {
t.cl.lock()
defer t.cl.unlock()
oldMax = t.maxEstablishedConns
t.maxEstablishedConns = max
wcs := slices.HeapInterface(slices.FromMapKeys(t.conns), worseConn)
for len(t.conns) > t.maxEstablishedConns && wcs.Len() > 0 {
t.dropConnection(wcs.Pop().(*connection))
}
t.openNewConns()
return oldMax
}
func (t *Torrent) pieceHashed(piece pieceIndex, correct bool) {
log.Fmsg("hashed piece %d", piece).Add("piece", piece).Add("passed", correct).AddValue(debugLogValue).Log(t.logger)
if t.closed.IsSet() {
return
}
p := &t.pieces[piece]
touchers := t.reapPieceTouchers(piece)
if p.storageCompletionOk {
// Don't score the first time a piece is hashed, it could be an
// initial check.
if correct {
pieceHashedCorrect.Add(1)
} else {
log.Printf("%s: piece %d (%s) failed hash: %d connections contributed", t, piece, p.hash, len(touchers))
pieceHashedNotCorrect.Add(1)
}
}
if correct {
if len(touchers) != 0 {
// Don't increment stats above connection-level for every involved
// connection.
t.allStats((*ConnStats).incrementPiecesDirtiedGood)
}
for _, c := range touchers {
c.stats.incrementPiecesDirtiedGood()
}
err := p.Storage().MarkComplete()
if err != nil {
log.Printf("%T: error marking piece complete %d: %s", t.storage, piece, err)
}
} else {
if len(touchers) != 0 {
// Don't increment stats above connection-level for every involved
// connection.
t.allStats((*ConnStats).incrementPiecesDirtiedBad)
for _, c := range touchers {
// Y u do dis peer?!
c.stats.incrementPiecesDirtiedBad()
}
slices.Sort(touchers, connLessTrusted)
if t.cl.config.Debug {
log.Printf("dropping first corresponding conn from trust: %v", func() (ret []int64) {
for _, c := range touchers {
ret = append(ret, c.netGoodPiecesDirtied())
}
return
}())
}
c := touchers[0]
t.cl.banPeerIP(missinggo.AddrIP(c.remoteAddr()))
c.Drop()
}
t.onIncompletePiece(piece)
p.Storage().MarkNotComplete()
}
t.updatePieceCompletion(piece)
}
func (t *Torrent) cancelRequestsForPiece(piece pieceIndex) {
// TODO: Make faster
for cn := range t.conns {
cn.tickleWriter()
}
}
func (t *Torrent) onPieceCompleted(piece pieceIndex) {
t.pendAllChunkSpecs(piece)
t.cancelRequestsForPiece(piece)
for conn := range t.conns {
conn.Have(piece)
}
}
// Called when a piece is found to be not complete.
func (t *Torrent) onIncompletePiece(piece pieceIndex) {
if t.pieceAllDirty(piece) {
t.pendAllChunkSpecs(piece)
}
if !t.wantPieceIndex(piece) {
// log.Printf("piece %d incomplete and unwanted", piece)
return
}
// We could drop any connections that we told we have a piece that we
// don't here. But there's a test failure, and it seems clients don't care
// if you request pieces that you already claim to have. Pruning bad
// connections might just remove any connections that aren't treating us
// favourably anyway.
// for c := range t.conns {
// if c.sentHave(piece) {
// c.Drop()
// }
// }
for conn := range t.conns {
if conn.PeerHasPiece(piece) {
conn.updateRequests()
}
}
}
func (t *Torrent) verifyPiece(piece pieceIndex) {
cl := t.cl
cl.lock()
defer cl.unlock()
p := &t.pieces[piece]
defer func() {
p.numVerifies++
cl.event.Broadcast()
}()
for p.hashing || t.storage == nil {
cl.event.Wait()
}
if !p.t.piecesQueuedForHash.Remove(bitmap.BitIndex(piece)) {
panic("piece was not queued")
}
t.updatePiecePriority(piece)
if t.closed.IsSet() || t.pieceComplete(piece) {
return
}
p.hashing = true
t.publishPieceChange(piece)
t.updatePiecePriority(piece)
t.storageLock.RLock()
cl.unlock()
sum := t.hashPiece(piece)
t.storageLock.RUnlock()
cl.lock()
p.hashing = false
t.updatePiecePriority(piece)
t.pieceHashed(piece, sum == p.hash)
t.publishPieceChange(piece)
}
// Return the connections that touched a piece, and clear the entries while
// doing it.
func (t *Torrent) reapPieceTouchers(piece pieceIndex) (ret []*connection) {
for c := range t.pieces[piece].dirtiers {
delete(c.peerTouchedPieces, piece)
ret = append(ret, c)
}
t.pieces[piece].dirtiers = nil
return
}
func (t *Torrent) connsAsSlice() (ret []*connection) {
for c := range t.conns {
ret = append(ret, c)
}
return
}
// Currently doesn't really queue, but should in the future.
func (t *Torrent) queuePieceCheck(pieceIndex pieceIndex) {
piece := &t.pieces[pieceIndex]
if piece.queuedForHash() {
return
}
t.piecesQueuedForHash.Add(bitmap.BitIndex(pieceIndex))
t.publishPieceChange(pieceIndex)
t.updatePiecePriority(pieceIndex)
go t.verifyPiece(pieceIndex)
}
func (t *Torrent) VerifyData() {
for i := pieceIndex(0); i < t.NumPieces(); i++ {
t.Piece(i).VerifyData()
}
}
// Start the process of connecting to the given peer for the given torrent if
// appropriate.
func (t *Torrent) initiateConn(peer Peer) {
if peer.Id == t.cl.peerID {
return
}
if t.cl.badPeerIPPort(peer.IP, peer.Port) {
return
}
addr := net.JoinHostPort(peer.IP.String(), fmt.Sprintf("%d", peer.Port))
if t.addrActive(addr) {
return
}
t.halfOpen[addr] = peer
go t.cl.outgoingConnection(t, addr, peer.Source)
}
func (t *Torrent) AddClientPeer(cl *Client) {
t.AddPeers(func() (ps []Peer) {
for _, la := range cl.ListenAddrs() {
ps = append(ps, Peer{
IP: missinggo.AddrIP(la),
Port: missinggo.AddrPort(la),
})
}
return
}())
}
// All stats that include this Torrent. Useful when we want to increment
// ConnStats but not for every connection.
func (t *Torrent) allStats(f func(*ConnStats)) {
f(&t.stats)
f(&t.cl.stats)
}
func (t *Torrent) hashingPiece(i pieceIndex) bool {
return t.pieces[i].hashing
}
func (t *Torrent) pieceQueuedForHash(i pieceIndex) bool {
return t.piecesQueuedForHash.Get(bitmap.BitIndex(i))
}
func (t *Torrent) dialTimeout() time.Duration {
return reducedDialTimeout(t.cl.config.MinDialTimeout, t.cl.config.NominalDialTimeout, t.cl.config.HalfOpenConnsPerTorrent, t.peers.Len())
}