package torrent import ( "bufio" "bytes" "fmt" "io" "math" "math/rand" "net" "strconv" "strings" "sync" "time" "github.com/anacrolix/dht" "github.com/anacrolix/log" "github.com/anacrolix/missinggo" "github.com/anacrolix/missinggo/bitmap" "github.com/anacrolix/missinggo/iter" "github.com/anacrolix/missinggo/prioritybitmap" "github.com/pkg/errors" "github.com/anacrolix/torrent/bencode" "github.com/anacrolix/torrent/mse" pp "github.com/anacrolix/torrent/peer_protocol" ) type peerSource string const ( peerSourceTracker = "Tr" peerSourceIncoming = "I" peerSourceDHTGetPeers = "Hg" // Peers we found by searching a DHT. peerSourceDHTAnnouncePeer = "Ha" // Peers that were announced to us by a DHT. peerSourcePEX = "X" ) // Maintains the state of a connection with a peer. type connection struct { // First to ensure 64-bit alignment for atomics. See #262. stats ConnStats t *Torrent // The actual Conn, used for closing, and setting socket options. conn net.Conn outgoing bool // The Reader and Writer for this Conn, with hooks installed for stats, // limiting, deadlines etc. w io.Writer r io.Reader // True if the connection is operating over MSE obfuscation. headerEncrypted bool cryptoMethod mse.CryptoMethod Discovery peerSource closed missinggo.Event // Set true after we've added our ConnStats generated during handshake to // other ConnStat instances as determined when the *Torrent became known. reconciledHandshakeStats bool lastMessageReceived time.Time completedHandshake time.Time lastUsefulChunkReceived time.Time lastChunkSent time.Time // Stuff controlled by the local peer. Interested bool lastBecameInterested time.Time priorInterest time.Duration lastStartedExpectingToReceiveChunks time.Time cumulativeExpectedToReceiveChunks time.Duration chunksReceivedWhileExpecting int64 Choked bool requests map[request]struct{} requestsLowWater int // Chunks that we might reasonably expect to receive from the peer. Due to // latency, buffering, and implementation differences, we may receive // chunks that are no longer in the set of requests actually want. validReceiveChunks map[request]struct{} // Indexed by metadata piece, set to true if posted and pending a // response. metadataRequests []bool sentHaves bitmap.Bitmap // Stuff controlled by the remote peer. PeerID PeerID PeerInterested bool PeerChoked bool PeerRequests map[request]struct{} PeerExtensionBytes pp.PeerExtensionBits // The pieces the peer has claimed to have. peerPieces bitmap.Bitmap // The peer has everything. This can occur due to a special message, when // we may not even know the number of pieces in the torrent yet. peerSentHaveAll bool // The highest possible number of pieces the torrent could have based on // communication with the peer. Generally only useful until we have the // torrent info. peerMinPieces pieceIndex // Pieces we've accepted chunks for from the peer. peerTouchedPieces map[pieceIndex]struct{} peerAllowedFast bitmap.Bitmap PeerMaxRequests int // Maximum pending requests the peer allows. PeerExtensionIDs map[pp.ExtensionName]pp.ExtensionNumber PeerClientName string pieceInclination []int pieceRequestOrder prioritybitmap.PriorityBitmap writeBuffer *bytes.Buffer uploadTimer *time.Timer writerCond sync.Cond } func (cn *connection) updateExpectingChunks() { if cn.expectingChunks() { if cn.lastStartedExpectingToReceiveChunks.IsZero() { cn.lastStartedExpectingToReceiveChunks = time.Now() } } else { if !cn.lastStartedExpectingToReceiveChunks.IsZero() { cn.cumulativeExpectedToReceiveChunks += time.Since(cn.lastStartedExpectingToReceiveChunks) cn.lastStartedExpectingToReceiveChunks = time.Time{} } } } func (cn *connection) expectingChunks() bool { return cn.Interested && !cn.PeerChoked } // Returns true if the connection is over IPv6. func (cn *connection) ipv6() bool { ip := missinggo.AddrIP(cn.remoteAddr()) if ip.To4() != nil { return false } return len(ip) == net.IPv6len } // Returns true the dialer has the lower client peer ID. TODO: Find the // specification for this. func (cn *connection) isPreferredDirection() bool { return bytes.Compare(cn.t.cl.peerID[:], cn.PeerID[:]) < 0 == cn.outgoing } // Returns whether the left connection should be preferred over the right one, // considering only their networking properties. If ok is false, we can't // decide. func (l *connection) hasPreferredNetworkOver(r *connection) (left, ok bool) { var ml multiLess ml.NextBool(l.isPreferredDirection(), r.isPreferredDirection()) ml.NextBool(!l.utp(), !r.utp()) ml.NextBool(l.ipv6(), r.ipv6()) return ml.FinalOk() } func (cn *connection) cumInterest() time.Duration { ret := cn.priorInterest if cn.Interested { ret += time.Since(cn.lastBecameInterested) } return ret } func (cn *connection) peerHasAllPieces() (all bool, known bool) { if cn.peerSentHaveAll { return true, true } if !cn.t.haveInfo() { return false, false } return bitmap.Flip(cn.peerPieces, 0, bitmap.BitIndex(cn.t.numPieces())).IsEmpty(), true } func (cn *connection) mu() sync.Locker { return cn.t.cl.locker() } func (cn *connection) remoteAddr() net.Addr { return cn.conn.RemoteAddr() } func (cn *connection) localAddr() net.Addr { return cn.conn.LocalAddr() } func (cn *connection) supportsExtension(ext pp.ExtensionName) bool { _, ok := cn.PeerExtensionIDs[ext] return ok } // The best guess at number of pieces in the torrent for this peer. func (cn *connection) bestPeerNumPieces() pieceIndex { if cn.t.haveInfo() { return cn.t.numPieces() } return cn.peerMinPieces } func (cn *connection) completedString() string { have := pieceIndex(cn.peerPieces.Len()) if cn.peerSentHaveAll { have = cn.bestPeerNumPieces() } return fmt.Sprintf("%d/%d", have, cn.bestPeerNumPieces()) } // Correct the PeerPieces slice length. Return false if the existing slice is // invalid, such as by receiving badly sized BITFIELD, or invalid HAVE // messages. func (cn *connection) setNumPieces(num pieceIndex) error { cn.peerPieces.RemoveRange(bitmap.BitIndex(num), bitmap.ToEnd) cn.peerPiecesChanged() return nil } func eventAgeString(t time.Time) string { if t.IsZero() { return "never" } return fmt.Sprintf("%.2fs ago", time.Since(t).Seconds()) } func (cn *connection) connectionFlags() (ret string) { c := func(b byte) { ret += string([]byte{b}) } if cn.cryptoMethod == mse.CryptoMethodRC4 { c('E') } else if cn.headerEncrypted { c('e') } ret += string(cn.Discovery) if cn.utp() { c('U') } return } func (cn *connection) utp() bool { return isUtpNetwork(cn.remoteAddr().Network()) } // Inspired by https://github.com/transmission/transmission/wiki/Peer-Status-Text. func (cn *connection) statusFlags() (ret string) { c := func(b byte) { ret += string([]byte{b}) } if cn.Interested { c('i') } if cn.Choked { c('c') } c('-') ret += cn.connectionFlags() c('-') if cn.PeerInterested { c('i') } if cn.PeerChoked { c('c') } return } // func (cn *connection) String() string { // var buf bytes.Buffer // cn.WriteStatus(&buf, nil) // return buf.String() // } func (cn *connection) downloadRate() float64 { return float64(cn.stats.BytesReadUsefulData.Int64()) / cn.cumInterest().Seconds() } func (cn *connection) WriteStatus(w io.Writer, t *Torrent) { // \t isn't preserved in
blocks? fmt.Fprintf(w, "%+-55q %s %s-%s\n", cn.PeerID, cn.PeerExtensionBytes, cn.localAddr(), cn.remoteAddr()) fmt.Fprintf(w, " last msg: %s, connected: %s, last helpful: %s, itime: %s, etime: %s\n", eventAgeString(cn.lastMessageReceived), eventAgeString(cn.completedHandshake), eventAgeString(cn.lastHelpful()), cn.cumInterest(), cn.totalExpectingTime(), ) fmt.Fprintf(w, " %s completed, %d pieces touched, good chunks: %v/%v-%v reqq: (%d,%d,%d]-%d, flags: %s, dr: %.1f KiB/s\n", cn.completedString(), len(cn.peerTouchedPieces), &cn.stats.ChunksReadUseful, &cn.stats.ChunksRead, &cn.stats.ChunksWritten, cn.requestsLowWater, cn.numLocalRequests(), cn.nominalMaxRequests(), len(cn.PeerRequests), cn.statusFlags(), cn.downloadRate()/(1<<10), ) fmt.Fprintf(w, " next pieces: %v%s\n", iter.ToSlice(iter.Head(10, cn.iterPendingPiecesUntyped)), func() string { if cn.shouldRequestWithoutBias() { return " (fastest)" } else { return "" } }()) } func (cn *connection) Close() { if !cn.closed.Set() { return } cn.tickleWriter() cn.discardPieceInclination() cn.pieceRequestOrder.Clear() if cn.conn != nil { go cn.conn.Close() } } func (cn *connection) PeerHasPiece(piece pieceIndex) bool { return cn.peerSentHaveAll || cn.peerPieces.Contains(bitmap.BitIndex(piece)) } // Writes a message into the write buffer. func (cn *connection) Post(msg pp.Message) { torrent.Add(fmt.Sprintf("messages posted of type %s", msg.Type.String()), 1) // We don't need to track bytes here because a connection.w Writer wrapper // takes care of that (although there's some delay between us recording // the message, and the connection writer flushing it out.). cn.writeBuffer.Write(msg.MustMarshalBinary()) // Last I checked only Piece messages affect stats, and we don't post // those. cn.wroteMsg(&msg) cn.tickleWriter() } func (cn *connection) requestMetadataPiece(index int) { eID := cn.PeerExtensionIDs[pp.ExtensionNameMetadata] if eID == 0 { return } if index < len(cn.metadataRequests) && cn.metadataRequests[index] { return } cn.Post(pp.Message{ Type: pp.Extended, ExtendedID: eID, ExtendedPayload: func() []byte { b, err := bencode.Marshal(map[string]int{ "msg_type": pp.RequestMetadataExtensionMsgType, "piece": index, }) if err != nil { panic(err) } return b }(), }) for index >= len(cn.metadataRequests) { cn.metadataRequests = append(cn.metadataRequests, false) } cn.metadataRequests[index] = true } func (cn *connection) requestedMetadataPiece(index int) bool { return index < len(cn.metadataRequests) && cn.metadataRequests[index] } // The actual value to use as the maximum outbound requests. func (cn *connection) nominalMaxRequests() (ret int) { if cn.t.requestStrategy == 3 { expectingTime := int64(cn.totalExpectingTime()) if expectingTime == 0 { expectingTime = math.MaxInt64 } else { expectingTime *= 2 } return int(clamp( 1, int64(cn.PeerMaxRequests), max( // It makes sense to always pipeline at least one connection, // since latency must be non-zero. 2, // Request only as many as we expect to receive in the // dupliateRequestTimeout window. We are trying to avoid having to // duplicate requests. cn.chunksReceivedWhileExpecting*int64(cn.t.duplicateRequestTimeout)/expectingTime, ), )) } return int(clamp( 1, int64(cn.PeerMaxRequests), max(64, cn.stats.ChunksReadUseful.Int64()-(cn.stats.ChunksRead.Int64()-cn.stats.ChunksReadUseful.Int64())))) } func (cn *connection) totalExpectingTime() (ret time.Duration) { ret = cn.cumulativeExpectedToReceiveChunks if !cn.lastStartedExpectingToReceiveChunks.IsZero() { ret += time.Since(cn.lastStartedExpectingToReceiveChunks) } return } func (cn *connection) onPeerSentCancel(r request) { if _, ok := cn.PeerRequests[r]; !ok { torrent.Add("unexpected cancels received", 1) return } if cn.fastEnabled() { cn.reject(r) } else { delete(cn.PeerRequests, r) } } func (cn *connection) Choke(msg messageWriter) (more bool) { if cn.Choked { return true } cn.Choked = true more = msg(pp.Message{ Type: pp.Choke, }) if cn.fastEnabled() { for r := range cn.PeerRequests { // TODO: Don't reject pieces in allowed fast set. cn.reject(r) } } else { cn.PeerRequests = nil } return } func (cn *connection) Unchoke(msg func(pp.Message) bool) bool { if !cn.Choked { return true } cn.Choked = false return msg(pp.Message{ Type: pp.Unchoke, }) } func (cn *connection) SetInterested(interested bool, msg func(pp.Message) bool) bool { if cn.Interested == interested { return true } cn.Interested = interested if interested { cn.lastBecameInterested = time.Now() } else if !cn.lastBecameInterested.IsZero() { cn.priorInterest += time.Since(cn.lastBecameInterested) } cn.updateExpectingChunks() // log.Printf("%p: setting interest: %v", cn, interested) return msg(pp.Message{ Type: func() pp.MessageType { if interested { return pp.Interested } else { return pp.NotInterested } }(), }) } // The function takes a message to be sent, and returns true if more messages // are okay. type messageWriter func(pp.Message) bool // Proxies the messageWriter's response. func (cn *connection) request(r request, mw messageWriter) bool { if _, ok := cn.requests[r]; ok { panic("chunk already requested") } if !cn.PeerHasPiece(pieceIndex(r.Index)) { panic("requesting piece peer doesn't have") } if _, ok := cn.t.conns[cn]; !ok { panic("requesting but not in active conns") } if cn.closed.IsSet() { panic("requesting when connection is closed") } if cn.PeerChoked { if cn.peerAllowedFast.Get(int(r.Index)) { torrent.Add("allowed fast requests sent", 1) } else { panic("requesting while choked and not allowed fast") } } if cn.t.hashingPiece(pieceIndex(r.Index)) { panic("piece is being hashed") } if cn.t.pieceQueuedForHash(pieceIndex(r.Index)) { panic("piece is queued for hash") } if cn.requests == nil { cn.requests = make(map[request]struct{}) } cn.requests[r] = struct{}{} if cn.validReceiveChunks == nil { cn.validReceiveChunks = make(map[request]struct{}) } cn.validReceiveChunks[r] = struct{}{} cn.t.pendingRequests[r]++ cn.t.lastRequested[r] = time.AfterFunc(cn.t.duplicateRequestTimeout, func() { torrent.Add("duplicate request timeouts", 1) cn.mu().Lock() defer cn.mu().Unlock() delete(cn.t.lastRequested, r) for cn := range cn.t.conns { if cn.PeerHasPiece(pieceIndex(r.Index)) { cn.updateRequests() } } }) cn.updateExpectingChunks() return mw(pp.Message{ Type: pp.Request, Index: r.Index, Begin: r.Begin, Length: r.Length, }) } func (cn *connection) fillWriteBuffer(msg func(pp.Message) bool) { if !cn.t.networkingEnabled { if !cn.SetInterested(false, msg) { return } if len(cn.requests) != 0 { for r := range cn.requests { cn.deleteRequest(r) // log.Printf("%p: cancelling request: %v", cn, r) if !msg(makeCancelMessage(r)) { return } } } } if len(cn.requests) <= cn.requestsLowWater { filledBuffer := false cn.iterPendingPieces(func(pieceIndex pieceIndex) bool { cn.iterPendingRequests(pieceIndex, func(r request) bool { if !cn.SetInterested(true, msg) { filledBuffer = true return false } if len(cn.requests) >= cn.nominalMaxRequests() { return false } // Choking is looked at here because our interest is dependent // on whether we'd make requests in its absence. if cn.PeerChoked { if !cn.peerAllowedFast.Get(bitmap.BitIndex(r.Index)) { return false } } if _, ok := cn.requests[r]; ok { return true } filledBuffer = !cn.request(r, msg) return !filledBuffer }) return !filledBuffer }) if filledBuffer { // If we didn't completely top up the requests, we shouldn't mark // the low water, since we'll want to top up the requests as soon // as we have more write buffer space. return } cn.requestsLowWater = len(cn.requests) / 2 } cn.upload(msg) } // Routine that writes to the peer. Some of what to write is buffered by // activity elsewhere in the Client, and some is determined locally when the // connection is writable. func (cn *connection) writer(keepAliveTimeout time.Duration) { var ( lastWrite time.Time = time.Now() keepAliveTimer *time.Timer ) keepAliveTimer = time.AfterFunc(keepAliveTimeout, func() { cn.mu().Lock() defer cn.mu().Unlock() if time.Since(lastWrite) >= keepAliveTimeout { cn.tickleWriter() } keepAliveTimer.Reset(keepAliveTimeout) }) cn.mu().Lock() defer cn.mu().Unlock() defer cn.Close() defer keepAliveTimer.Stop() frontBuf := new(bytes.Buffer) for { if cn.closed.IsSet() { return } if cn.writeBuffer.Len() == 0 { cn.fillWriteBuffer(func(msg pp.Message) bool { cn.wroteMsg(&msg) cn.writeBuffer.Write(msg.MustMarshalBinary()) torrent.Add(fmt.Sprintf("messages filled of type %s", msg.Type.String()), 1) return cn.writeBuffer.Len() < 1<<16 // 64KiB }) } if cn.writeBuffer.Len() == 0 && time.Since(lastWrite) >= keepAliveTimeout { cn.writeBuffer.Write(pp.Message{Keepalive: true}.MustMarshalBinary()) postedKeepalives.Add(1) } if cn.writeBuffer.Len() == 0 { // TODO: Minimize wakeups.... cn.writerCond.Wait() continue } // Flip the buffers. frontBuf, cn.writeBuffer = cn.writeBuffer, frontBuf cn.mu().Unlock() n, err := cn.w.Write(frontBuf.Bytes()) cn.mu().Lock() if n != 0 { lastWrite = time.Now() keepAliveTimer.Reset(keepAliveTimeout) } if err != nil { return } if n != frontBuf.Len() { panic("short write") } frontBuf.Reset() } } func (cn *connection) Have(piece pieceIndex) { if cn.sentHaves.Get(bitmap.BitIndex(piece)) { return } cn.Post(pp.Message{ Type: pp.Have, Index: pp.Integer(piece), }) cn.sentHaves.Add(bitmap.BitIndex(piece)) } func (cn *connection) PostBitfield() { if cn.sentHaves.Len() != 0 { panic("bitfield must be first have-related message sent") } if !cn.t.haveAnyPieces() { return } cn.Post(pp.Message{ Type: pp.Bitfield, Bitfield: cn.t.bitfield(), }) cn.sentHaves = cn.t.completedPieces.Copy() } func (cn *connection) updateRequests() { // log.Print("update requests") cn.tickleWriter() } // Emits the indices in the Bitmaps bms in order, never repeating any index. // skip is mutated during execution, and its initial values will never be // emitted. func iterBitmapsDistinct(skip *bitmap.Bitmap, bms ...bitmap.Bitmap) iter.Func { return func(cb iter.Callback) { for _, bm := range bms { if !iter.All(func(i interface{}) bool { skip.Add(i.(int)) return cb(i) }, bitmap.Sub(bm, *skip).Iter) { return } } } } func (cn *connection) iterUnbiasedPieceRequestOrder(f func(piece pieceIndex) bool) bool { now, readahead := cn.t.readerPiecePriorities() var skip bitmap.Bitmap if !cn.peerSentHaveAll { // Pieces to skip include pieces the peer doesn't have. skip = bitmap.Flip(cn.peerPieces, 0, bitmap.BitIndex(cn.t.numPieces())) } // And pieces that we already have. skip.Union(cn.t.completedPieces) skip.Union(cn.t.piecesQueuedForHash) // Return an iterator over the different priority classes, minus the skip // pieces. return iter.All( func(_piece interface{}) bool { i := _piece.(bitmap.BitIndex) if cn.t.hashingPiece(pieceIndex(i)) { return true } return f(pieceIndex(i)) }, iterBitmapsDistinct(&skip, now, readahead), func(cb iter.Callback) { cn.t.pendingPieces.IterTyped(func(piece int) bool { if skip.Contains(piece) { return true } more := cb(piece) skip.Add(piece) return more }) }, ) } // The connection should download highest priority pieces first, without any // inclination toward avoiding wastage. Generally we might do this if there's // a single connection, or this is the fastest connection, and we have active // readers that signal an ordering preference. It's conceivable that the best // connection should do this, since it's least likely to waste our time if // assigned to the highest priority pieces, and assigning more than one this // role would cause significant wasted bandwidth. func (cn *connection) shouldRequestWithoutBias() bool { if cn.t.requestStrategy != 2 { return false } if len(cn.t.readers) == 0 { return false } if len(cn.t.conns) == 1 { return true } if cn == cn.t.fastestConn { return true } return false } func (cn *connection) iterPendingPieces(f func(pieceIndex) bool) bool { if !cn.t.haveInfo() { return false } if cn.t.requestStrategy == 3 { return cn.iterUnbiasedPieceRequestOrder(f) } if cn.shouldRequestWithoutBias() { return cn.iterUnbiasedPieceRequestOrder(f) } else { return cn.pieceRequestOrder.IterTyped(func(i int) bool { return f(pieceIndex(i)) }) } } func (cn *connection) iterPendingPiecesUntyped(f iter.Callback) { cn.iterPendingPieces(func(i pieceIndex) bool { return f(i) }) } func (cn *connection) iterPendingRequests(piece pieceIndex, f func(request) bool) bool { return iterUndirtiedChunks(piece, cn.t, func(cs chunkSpec) bool { r := request{pp.Integer(piece), cs} if cn.t.requestStrategy == 3 { if _, ok := cn.t.lastRequested[r]; ok { // This piece has been requested on another connection, and // the duplicate request timer is still running. return true } } return f(r) }) } func iterUndirtiedChunks(piece pieceIndex, t *Torrent, f func(chunkSpec) bool) bool { p := &t.pieces[piece] if t.requestStrategy == 3 { for i := pp.Integer(0); i < p.numChunks(); i++ { if !p.dirtyChunks.Get(bitmap.BitIndex(i)) { if !f(t.chunkIndexSpec(i, piece)) { return false } } } return true } chunkIndices := t.pieces[piece].undirtiedChunkIndices().ToSortedSlice() // TODO: Use "math/rand".Shuffle >= Go 1.10 return iter.ForPerm(len(chunkIndices), func(i int) bool { return f(t.chunkIndexSpec(pp.Integer(chunkIndices[i]), piece)) }) } // check callers updaterequests func (cn *connection) stopRequestingPiece(piece pieceIndex) bool { return cn.pieceRequestOrder.Remove(bitmap.BitIndex(piece)) } // This is distinct from Torrent piece priority, which is the user's // preference. Connection piece priority is specific to a connection and is // used to pseudorandomly avoid connections always requesting the same pieces // and thus wasting effort. func (cn *connection) updatePiecePriority(piece pieceIndex) bool { tpp := cn.t.piecePriority(piece) if !cn.PeerHasPiece(piece) { tpp = PiecePriorityNone } if tpp == PiecePriorityNone { return cn.stopRequestingPiece(piece) } prio := cn.getPieceInclination()[piece] switch cn.t.requestStrategy { case 1: switch tpp { case PiecePriorityNormal: case PiecePriorityReadahead: prio -= int(cn.t.numPieces()) case PiecePriorityNext, PiecePriorityNow: prio -= 2 * int(cn.t.numPieces()) default: panic(tpp) } prio += int(piece / 3) default: } return cn.pieceRequestOrder.Set(bitmap.BitIndex(piece), prio) || cn.shouldRequestWithoutBias() } func (cn *connection) getPieceInclination() []int { if cn.pieceInclination == nil { cn.pieceInclination = cn.t.getConnPieceInclination() } return cn.pieceInclination } func (cn *connection) discardPieceInclination() { if cn.pieceInclination == nil { return } cn.t.putPieceInclination(cn.pieceInclination) cn.pieceInclination = nil } func (cn *connection) peerPiecesChanged() { if cn.t.haveInfo() { prioritiesChanged := false for i := pieceIndex(0); i < cn.t.numPieces(); i++ { if cn.updatePiecePriority(i) { prioritiesChanged = true } } if prioritiesChanged { cn.updateRequests() } } } func (cn *connection) raisePeerMinPieces(newMin pieceIndex) { if newMin > cn.peerMinPieces { cn.peerMinPieces = newMin } } func (cn *connection) peerSentHave(piece pieceIndex) error { if cn.t.haveInfo() && piece >= cn.t.numPieces() || piece < 0 { return errors.New("invalid piece") } if cn.PeerHasPiece(piece) { return nil } cn.raisePeerMinPieces(piece + 1) cn.peerPieces.Set(bitmap.BitIndex(piece), true) if cn.updatePiecePriority(piece) { cn.updateRequests() } return nil } func (cn *connection) peerSentBitfield(bf []bool) error { cn.peerSentHaveAll = false if len(bf)%8 != 0 { panic("expected bitfield length divisible by 8") } // We know that the last byte means that at most the last 7 bits are // wasted. cn.raisePeerMinPieces(pieceIndex(len(bf) - 7)) if cn.t.haveInfo() && len(bf) > int(cn.t.numPieces()) { // Ignore known excess pieces. bf = bf[:cn.t.numPieces()] } for i, have := range bf { if have { cn.raisePeerMinPieces(pieceIndex(i) + 1) } cn.peerPieces.Set(i, have) } cn.peerPiecesChanged() return nil } func (cn *connection) onPeerSentHaveAll() error { cn.peerSentHaveAll = true cn.peerPieces.Clear() cn.peerPiecesChanged() return nil } func (cn *connection) peerSentHaveNone() error { cn.peerPieces.Clear() cn.peerSentHaveAll = false cn.peerPiecesChanged() return nil } func (c *connection) requestPendingMetadata() { if c.t.haveInfo() { return } if c.PeerExtensionIDs[pp.ExtensionNameMetadata] == 0 { // Peer doesn't support this. return } // Request metadata pieces that we don't have in a random order. var pending []int for index := 0; index < c.t.metadataPieceCount(); index++ { if !c.t.haveMetadataPiece(index) && !c.requestedMetadataPiece(index) { pending = append(pending, index) } } for _, i := range rand.Perm(len(pending)) { c.requestMetadataPiece(pending[i]) } } func (cn *connection) wroteMsg(msg *pp.Message) { torrent.Add(fmt.Sprintf("messages written of type %s", msg.Type.String()), 1) cn.allStats(func(cs *ConnStats) { cs.wroteMsg(msg) }) } func (cn *connection) readMsg(msg *pp.Message) { cn.allStats(func(cs *ConnStats) { cs.readMsg(msg) }) } // After handshake, we know what Torrent and Client stats to include for a // connection. func (cn *connection) postHandshakeStats(f func(*ConnStats)) { t := cn.t f(&t.stats) f(&t.cl.stats) } // All ConnStats that include this connection. Some objects are not known // until the handshake is complete, after which it's expected to reconcile the // differences. func (cn *connection) allStats(f func(*ConnStats)) { f(&cn.stats) if cn.reconciledHandshakeStats { cn.postHandshakeStats(f) } } func (cn *connection) wroteBytes(n int64) { cn.allStats(add(n, func(cs *ConnStats) *Count { return &cs.BytesWritten })) } func (cn *connection) readBytes(n int64) { cn.allStats(add(n, func(cs *ConnStats) *Count { return &cs.BytesRead })) } // Returns whether the connection could be useful to us. We're seeding and // they want data, we don't have metainfo and they can provide it, etc. func (c *connection) useful() bool { t := c.t if c.closed.IsSet() { return false } if !t.haveInfo() { return c.supportsExtension("ut_metadata") } if t.seeding() && c.PeerInterested { return true } if c.peerHasWantedPieces() { return true } return false } func (c *connection) lastHelpful() (ret time.Time) { ret = c.lastUsefulChunkReceived if c.t.seeding() && c.lastChunkSent.After(ret) { ret = c.lastChunkSent } return } func (c *connection) fastEnabled() bool { return c.PeerExtensionBytes.SupportsFast() && c.t.cl.extensionBytes.SupportsFast() } func (c *connection) reject(r request) { if !c.fastEnabled() { panic("fast not enabled") } c.Post(r.ToMsg(pp.Reject)) delete(c.PeerRequests, r) } func (c *connection) onReadRequest(r request) error { requestedChunkLengths.Add(strconv.FormatUint(r.Length.Uint64(), 10), 1) if r.Begin+r.Length > c.t.pieceLength(pieceIndex(r.Index)) { torrent.Add("bad requests received", 1) return errors.New("bad request") } if _, ok := c.PeerRequests[r]; ok { torrent.Add("duplicate requests received", 1) return nil } if c.Choked { torrent.Add("requests received while choking", 1) if c.fastEnabled() { torrent.Add("requests rejected while choking", 1) c.reject(r) } return nil } if len(c.PeerRequests) >= maxRequests { torrent.Add("requests received while queue full", 1) if c.fastEnabled() { c.reject(r) } // BEP 6 says we may close here if we choose. return nil } if !c.t.havePiece(pieceIndex(r.Index)) { // This isn't necessarily them screwing up. We can drop pieces // from our storage, and can't communicate this to peers // except by reconnecting. requestsReceivedForMissingPieces.Add(1) return fmt.Errorf("peer requested piece we don't have: %v", r.Index.Int()) } if c.PeerRequests == nil { c.PeerRequests = make(map[request]struct{}, maxRequests) } c.PeerRequests[r] = struct{}{} c.tickleWriter() return nil } // Processes incoming bittorrent messages. The client lock is held upon entry // and exit. Returning will end the connection. func (c *connection) mainReadLoop() (err error) { defer func() { if err != nil { torrent.Add("connection.mainReadLoop returned with error", 1) } else { torrent.Add("connection.mainReadLoop returned with no error", 1) } }() t := c.t cl := t.cl decoder := pp.Decoder{ R: bufio.NewReaderSize(c.r, 1<<17), MaxLength: 256 * 1024, Pool: t.chunkPool, } for { var msg pp.Message func() { cl.unlock() defer cl.lock() err = decoder.Decode(&msg) }() if t.closed.IsSet() || c.closed.IsSet() || err == io.EOF { return nil } if err != nil { return err } c.readMsg(&msg) c.lastMessageReceived = time.Now() if msg.Keepalive { receivedKeepalives.Add(1) continue } messageTypesReceived.Add(msg.Type.String(), 1) if msg.Type.FastExtension() && !c.fastEnabled() { return fmt.Errorf("received fast extension message (type=%v) but extension is disabled", msg.Type) } switch msg.Type { case pp.Choke: c.PeerChoked = true c.deleteAllRequests() // We can then reset our interest. c.updateRequests() c.updateExpectingChunks() case pp.Reject: c.deleteRequest(newRequestFromMessage(&msg)) delete(c.validReceiveChunks, newRequestFromMessage(&msg)) case pp.Unchoke: c.PeerChoked = false c.tickleWriter() c.updateExpectingChunks() case pp.Interested: c.PeerInterested = true c.tickleWriter() case pp.NotInterested: c.PeerInterested = false // We don't clear their requests since it isn't clear in the spec. // We'll probably choke them for this, which will clear them if // appropriate, and is clearly specified. case pp.Have: err = c.peerSentHave(pieceIndex(msg.Index)) case pp.Request: r := newRequestFromMessage(&msg) err = c.onReadRequest(r) case pp.Cancel: req := newRequestFromMessage(&msg) c.onPeerSentCancel(req) case pp.Bitfield: err = c.peerSentBitfield(msg.Bitfield) case pp.HaveAll: err = c.onPeerSentHaveAll() case pp.HaveNone: err = c.peerSentHaveNone() case pp.Piece: err = c.receiveChunk(&msg) if len(msg.Piece) == int(t.chunkSize) { t.chunkPool.Put(&msg.Piece) } if err != nil { err = fmt.Errorf("receiving chunk: %s", err) } case pp.Extended: err = c.onReadExtendedMsg(msg.ExtendedID, msg.ExtendedPayload) case pp.Port: pingAddr, err := net.ResolveUDPAddr("", c.remoteAddr().String()) if err != nil { panic(err) } if msg.Port != 0 { pingAddr.Port = int(msg.Port) } cl.eachDhtServer(func(s *dht.Server) { go s.Ping(pingAddr, nil) }) case pp.AllowedFast: torrent.Add("allowed fasts received", 1) log.Fmsg("peer allowed fast: %d", msg.Index).AddValues(c, debugLogValue).Log(c.t.logger) c.peerAllowedFast.Add(int(msg.Index)) c.updateRequests() case pp.Suggest: torrent.Add("suggests received", 1) log.Fmsg("peer suggested piece %d", msg.Index).AddValues(c, msg.Index, debugLogValue).Log(c.t.logger) c.updateRequests() default: err = fmt.Errorf("received unknown message type: %#v", msg.Type) } if err != nil { return err } } } func (c *connection) onReadExtendedMsg(id pp.ExtensionNumber, payload []byte) (err error) { defer func() { // TODO: Should we still do this? if err != nil { // These clients use their own extension IDs for outgoing message // types, which is incorrect. if bytes.HasPrefix(c.PeerID[:], []byte("-SD0100-")) || strings.HasPrefix(string(c.PeerID[:]), "-XL0012-") { err = nil } } }() t := c.t cl := t.cl switch id { case pp.HandshakeExtendedID: var d pp.ExtendedHandshakeMessage if err := bencode.Unmarshal(payload, &d); err != nil { log.Printf("error parsing extended handshake message %q: %s", payload, err) return errors.Wrap(err, "unmarshalling extended handshake payload") } if d.Reqq != 0 { c.PeerMaxRequests = d.Reqq } c.PeerClientName = d.V if c.PeerExtensionIDs == nil { c.PeerExtensionIDs = make(map[pp.ExtensionName]pp.ExtensionNumber, len(d.M)) } for name, id := range d.M { if _, ok := c.PeerExtensionIDs[name]; !ok { torrent.Add(fmt.Sprintf("peers supporting extension %q", name), 1) } c.PeerExtensionIDs[name] = id } if d.MetadataSize != 0 { if err = t.setMetadataSize(d.MetadataSize); err != nil { return errors.Wrapf(err, "setting metadata size to %d", d.MetadataSize) } } if _, ok := c.PeerExtensionIDs[pp.ExtensionNameMetadata]; ok { c.requestPendingMetadata() } return nil case metadataExtendedId: err := cl.gotMetadataExtensionMsg(payload, t, c) if err != nil { return fmt.Errorf("error handling metadata extension message: %s", err) } return nil case pexExtendedId: if cl.config.DisablePEX { // TODO: Maybe close the connection. Check that we're not // advertising that we support PEX if it's disabled. return nil } var pexMsg pp.PexMsg err := bencode.Unmarshal(payload, &pexMsg) if err != nil { return fmt.Errorf("error unmarshalling PEX message: %s", err) } torrent.Add("pex added6 peers received", int64(len(pexMsg.Added6))) var peers Peers peers.AppendFromPex(pexMsg.Added6, pexMsg.Added6Flags) peers.AppendFromPex(pexMsg.Added, pexMsg.AddedFlags) t.addPeers(peers) return nil default: return fmt.Errorf("unexpected extended message ID: %v", id) } } // Set both the Reader and Writer for the connection from a single ReadWriter. func (cn *connection) setRW(rw io.ReadWriter) { cn.r = rw cn.w = rw } // Returns the Reader and Writer as a combined ReadWriter. func (cn *connection) rw() io.ReadWriter { return struct { io.Reader io.Writer }{cn.r, cn.w} } // Handle a received chunk from a peer. func (c *connection) receiveChunk(msg *pp.Message) error { t := c.t cl := t.cl torrent.Add("chunks received", 1) req := newRequestFromMessage(msg) if c.PeerChoked { torrent.Add("chunks received while choked", 1) } if _, ok := c.validReceiveChunks[req]; !ok { torrent.Add("chunks received unexpected", 1) return errors.New("received unexpected chunk") } delete(c.validReceiveChunks, req) if c.PeerChoked && c.peerAllowedFast.Get(int(req.Index)) { torrent.Add("chunks received due to allowed fast", 1) } // Request has been satisfied. if c.deleteRequest(req) { if c.expectingChunks() { c.chunksReceivedWhileExpecting++ } } else { torrent.Add("chunks received unwanted", 1) } // Do we actually want this chunk? if t.haveChunk(req) { torrent.Add("chunks received wasted", 1) c.allStats(add(1, func(cs *ConnStats) *Count { return &cs.ChunksReadWasted })) return nil } piece := &t.pieces[req.Index] c.allStats(add(1, func(cs *ConnStats) *Count { return &cs.ChunksReadUseful })) c.allStats(add(int64(len(msg.Piece)), func(cs *ConnStats) *Count { return &cs.BytesReadUsefulData })) c.lastUsefulChunkReceived = time.Now() // if t.fastestConn != c { // log.Printf("setting fastest connection %p", c) // } t.fastestConn = c // Need to record that it hasn't been written yet, before we attempt to do // anything with it. piece.incrementPendingWrites() // Record that we have the chunk, so we aren't trying to download it while // waiting for it to be written to storage. piece.unpendChunkIndex(chunkIndex(req.chunkSpec, t.chunkSize)) // Cancel pending requests for this chunk. for c := range t.conns { c.postCancel(req) } err := func() error { cl.unlock() defer cl.lock() // Write the chunk out. Note that the upper bound on chunk writing // concurrency will be the number of connections. We write inline with // receiving the chunk (with this lock dance), because we want to // handle errors synchronously and I haven't thought of a nice way to // defer any concurrency to the storage and have that notify the // client of errors. TODO: Do that instead. return t.writeChunk(int(msg.Index), int64(msg.Begin), msg.Piece) }() piece.decrementPendingWrites() if err != nil { log.Printf("%s (%s): error writing chunk %v: %s", t, t.infoHash, req, err) t.pendRequest(req) t.updatePieceCompletion(pieceIndex(msg.Index)) return nil } // It's important that the piece is potentially queued before we check if // the piece is still wanted, because if it is queued, it won't be wanted. if t.pieceAllDirty(pieceIndex(req.Index)) { t.queuePieceCheck(pieceIndex(req.Index)) t.pendAllChunkSpecs(pieceIndex(req.Index)) } c.onDirtiedPiece(pieceIndex(req.Index)) cl.event.Broadcast() t.publishPieceChange(pieceIndex(req.Index)) return nil } func (c *connection) onDirtiedPiece(piece pieceIndex) { if c.peerTouchedPieces == nil { c.peerTouchedPieces = make(map[pieceIndex]struct{}) } c.peerTouchedPieces[piece] = struct{}{} ds := &c.t.pieces[piece].dirtiers if *ds == nil { *ds = make(map[*connection]struct{}) } (*ds)[c] = struct{}{} } func (c *connection) uploadAllowed() bool { if c.t.cl.config.NoUpload { return false } if c.t.seeding() { return true } if !c.peerHasWantedPieces() { return false } // Don't upload more than 100 KiB more than we download. if c.stats.BytesWrittenData.Int64() >= c.stats.BytesReadData.Int64()+100<<10 { return false } return true } func (c *connection) setRetryUploadTimer(delay time.Duration) { if c.uploadTimer == nil { c.uploadTimer = time.AfterFunc(delay, c.writerCond.Broadcast) } else { c.uploadTimer.Reset(delay) } } // Also handles choking and unchoking of the remote peer. func (c *connection) upload(msg func(pp.Message) bool) bool { // Breaking or completing this loop means we don't want to upload to the // peer anymore, and we choke them. another: for c.uploadAllowed() { // We want to upload to the peer. if !c.Unchoke(msg) { return false } for r := range c.PeerRequests { res := c.t.cl.config.UploadRateLimiter.ReserveN(time.Now(), int(r.Length)) if !res.OK() { panic(fmt.Sprintf("upload rate limiter burst size < %d", r.Length)) } delay := res.Delay() if delay > 0 { res.Cancel() c.setRetryUploadTimer(delay) // Hard to say what to return here. return true } more, err := c.sendChunk(r, msg) if err != nil { i := pieceIndex(r.Index) if c.t.pieceComplete(i) { c.t.updatePieceCompletion(i) if !c.t.pieceComplete(i) { // We had the piece, but not anymore. break another } } log.Str("error sending chunk to peer").AddValues(c, r, err).Log(c.t.logger) // If we failed to send a chunk, choke the peer to ensure they // flush all their requests. We've probably dropped a piece, // but there's no way to communicate this to the peer. If they // ask for it again, we'll kick them to allow us to send them // an updated bitfield. break another } delete(c.PeerRequests, r) if !more { return false } goto another } return true } return c.Choke(msg) } func (cn *connection) Drop() { cn.t.dropConnection(cn) } func (cn *connection) netGoodPiecesDirtied() int64 { return cn.stats.PiecesDirtiedGood.Int64() - cn.stats.PiecesDirtiedBad.Int64() } func (c *connection) peerHasWantedPieces() bool { return !c.pieceRequestOrder.IsEmpty() } func (c *connection) numLocalRequests() int { return len(c.requests) } func (c *connection) deleteRequest(r request) bool { if _, ok := c.requests[r]; !ok { return false } delete(c.requests, r) c.updateExpectingChunks() if t, ok := c.t.lastRequested[r]; ok { t.Stop() delete(c.t.lastRequested, r) } pr := c.t.pendingRequests pr[r]-- n := pr[r] if n == 0 { delete(pr, r) } if n < 0 { panic(n) } c.updateRequests() for _c := range c.t.conns { if !_c.Interested && _c != c && c.PeerHasPiece(pieceIndex(r.Index)) { _c.updateRequests() } } return true } func (c *connection) deleteAllRequests() { for r := range c.requests { c.deleteRequest(r) } if len(c.requests) != 0 { panic(len(c.requests)) } // for c := range c.t.conns { // c.tickleWriter() // } } func (c *connection) tickleWriter() { c.writerCond.Broadcast() } func (c *connection) postCancel(r request) bool { if !c.deleteRequest(r) { return false } c.Post(makeCancelMessage(r)) return true } func (c *connection) sendChunk(r request, msg func(pp.Message) bool) (more bool, err error) { // Count the chunk being sent, even if it isn't. b := make([]byte, r.Length) p := c.t.info.Piece(int(r.Index)) n, err := c.t.readAt(b, p.Offset()+int64(r.Begin)) if n != len(b) { if err == nil { panic("expected error") } return } else if err == io.EOF { err = nil } more = msg(pp.Message{ Type: pp.Piece, Index: r.Index, Begin: r.Begin, Piece: b, }) c.lastChunkSent = time.Now() return } func (c *connection) setTorrent(t *Torrent) { if c.t != nil { panic("connection already associated with a torrent") } c.t = t t.reconcileHandshakeStats(c) } func (c *connection) peerPriority() peerPriority { return bep40PriorityIgnoreError(c.remoteIpPort(), c.t.cl.publicAddr(c.remoteIp())) } func (c *connection) remoteIp() net.IP { return missinggo.AddrIP(c.remoteAddr()) } func (c *connection) remoteIpPort() ipPort { return ipPort{missinggo.AddrIP(c.remoteAddr()), uint16(missinggo.AddrPort(c.remoteAddr()))} }